Robust kernel Isomap

نویسندگان

  • Heeyoul Choi
  • Seungjin Choi
چکیده

Isomap is one of widely-used low-dimensional embedding methods, where geodesic distances on a weighted graph are incorporated with the classical scaling (metric multidimensional scaling). In this paper we pay our attention to two critical issues that were not considered in Isomap, such as: (1) generalization property (projection property); (2) topological stability. Then we present a robust kernel Isomap method, armed with such two properties. We present a method which relates the Isomap to Mercer kernel machines, so that the generalization property naturally emerges, through kernel principal component analysis. For topological stability, we investigate the network flow in a graph, providing a method for eliminating critical outliers. The useful behavior of the robust kernel Isomap is confirmed through numerical experiments with several data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Manifolds in Forensic Data

Chemical data related to illicit cocaine seizures is analyzed using linear and nonlinear dimensionality reduction methods. The goal is to find relevant features that could guide the data analysis process in chemical drug profiling, a recent field in the crime mapping community. The data has been collected using gas chromatography analysis. Several methods are tested: PCA, kernel PCA, isomap, sp...

متن کامل

Kernel Isomap

Isomap [4] is a manifold learning algorithm, which extends classical multidimensional scaling (MDS) by considering approximate geodesic distance instead of Euclidean distance. The approximate geodesic distance matrix can be interpreted as a kernel matrix, which implies that Isomap can be solved by a kernel eigenvalue problem. However, the geodesic distance kernel matrix is not guaranteed to be ...

متن کامل

Discussion of "Spectral Dimensionality Reduction via Maximum Entropy"

Since the introduction of LLE (Roweis and Saul, 2000) and Isomap (Tenenbaum et al., 2000), a large number of non-linear dimensionality reduction techniques (manifold learners) have been proposed. Many of these non-linear techniques can be viewed as instantiations of Kernel PCA; they employ a cleverly designed kernel matrix that preserves local data structure in the “feature space” (Bengio et al...

متن کامل

Learning Eigenfunctions Links Spectral Embedding and Kernel PCA

In this letter, we show a direct relation between spectral embedding methods and kernel principal components analysis and how both are special cases of a more general learning problem: learning the principal eigenfunctions of an operator defined from a kernel and the unknown data-generating density. Whereas spectral embedding methods provided only coordinates for the training points, the analys...

متن کامل

A robust least squares fuzzy regression model based on kernel function

In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2007